PackOS: A Microkernel Based on
IPv6

Master's thesis by John Stracke

Introduction

* The core of any microkernel 1s its IPC.

* Most microkernels use some sort of RPC.

* PackOS uses IPv6 1nstead.

Why would you do that?

* Reuse the existing IP-based protocols.
* Communicate with outside world.
* Simplity the kernel.

* IPv6 1nstead of IPv4 because of address space.

— Each process needs an address.

Benefits

* All kernel calls are O(1).

— No outstanding kernel operations.

— No kernel stacks, which means cheap threads.
* Simplifies process migration.

— All resources 1dentified by IPv6 address.

— Copy the memory space, use Mobile IP to deliver.

— Notify process to start using local resources.

Prior work

* The main influence on PackOS was [4.

* L4 has RPC-based IPC.

— Partially zero-copy.
— Structured messages.

— Clans & Chiefs.

— Overcomplicated.

What PackOS learned from L4.

* IPC performance 1s vital.
— Slow IPC means large-grain components.
— Large-grain components limit flexibility.
* L4 features PackOS adopted:
— /ero-copy.
— User-space process management.

— User-space drivers.

PackOS's innovation: the KAN

* Kernel Area Network: a virtual link layer.
* Asynchronous IPC.

* Packets are pages.

— Mapped out of sender's space, into recipient's.
— /ero-copy.

* Every process has at least one KAN address.

* Network interfaces are routers.

Zero-copy 1PC

1

The KAN (continued)

* Finds unusual uses.

* Interrupt handling via IPC.

— User space driver requests interrupt notification.

— On each interrupt, a KAN packet 1s delivered to the
bottom hallf.

— Bottom half manages the hardware, sends packet to
top half; kernel clears interrupts.

— Top half talks to other processes.

Sending an Ethernet packet: 1

RTL8139

Bottom
Half

P1 prepares a packet to send over Ethernet.

Sending an Ethernet packet: 2

RTL8 139
AN

The top half receives the packet.

Sending an Ethernet packet: 3

6

*

A RTL8 139
Top
Half

The top half copies the packet into the NIC.

Sending an Ethernet packet: 4

RTL8139

Bottom
Half

When the packet has been sent,
the NIC raises an interrupt.

Sending an Ethernet packet: 3

RTL8139

Bottom
Half

The kernel sends the bottom half an interrupt packet.

Sending an Ethernet packet: 6

RTL8139

Bottom
Half

The bottom half updates the NIC data structures.

Sending an Ethernet packet: 7

RTL8139

The bottom half sends a packet to notity the top half.

Sending an Ethernet packet: 8

RTL8139

’ Bottom
Half

The top half updates its internal data structures.

The prototype

* Started as a semester project in 91.516, running
under Linux, 1n user space.

* Later ported to x86 PC hardware.

— Started 1n real mode, moved to protected kernel.

* Adding memory protection among processes
uncovered flaws 1n user space code.

— Accidental use of globals spanning processes.

The prototype (2)

Solving the prototype's flaws proved impractical.
A new design 1s needed.
Learned lessons from the prototype.

These lessons will inform the new design.

lInterruptManager

The prototype: classes

e . B A S . R Bt B

BasicScheduler ;Enntﬂtsmtcher?

TimerServer

Scheduler = — —{SchedulerClient

TimerClient

Router

Filesystem

A

@

P SimpleFilesystemClient —@SimplefilesystemFile

| KAN @—| KANInterface

Ethernatlnterface+— Ethernet

glntermpthlanigﬂ‘rtp— RTLB139 -

.

Interaction example

NFS
Sintis Disk
| KAN | M

Two PackOS systems. The right-hand system 1s running an NFS
server, which 1s being used by processes P1 and P2. Arrows show
client-to-server direction.

Heterogeneous example

Linux

> ~

l' arl

ernet
KAN

(
LDAP
Kﬁ:lN_/r %

A heterogeneous network including two PackOS systems and one
Linux system. The left-hand PackOS system 1s using the Linux
system's LDAP server for authentication; the LDAP server is using
the right-hand PackOS system's NFS server for its configuration
files.

[.essons learned

Include memory protection from the start.
Separate user and kernel binaries.
PackOS needs threads.

DMA 1s dangerous.

The kernel should include a clock.

Include memory protection
from the start.

* Original user-space prototype could not have
memory protection.

* All processes were into the same binary.

* Certain crucial libraries had state crossing
process boundaries.

* Once memory protection was added, large
amounts of user-space code needed to be
rewritten.

Separate user and kernel binaries.

* In the prototype, all i1s 1n the same executable.

* Reasonable for original user-space
implementation.

* A problem 1n protected mode: no compile-time
separation between kernel code and user code.

* In the new design, PackOS should have separate
binaries from the start.

— Bootstrap in kernel, ELF 1n user space.

PackOS needs threads.

* In the prototype, all processes are single-
threaded.

* Event-driven loop.
* Unreasonably difficult to work with.

* New design will permit multithreaded processes.

DMA 1s dangerous.

* A design goal: keep device drivers from touching
anything but their assigned hardware.

* Not possible with most DMA-capable hardware:
DMA bypasses the MMU.

* Long-standing problem, much research behind it.
Requires new hardware designs.

* New design can't solve it, but should be aware of
the problem.

DMA 1s dangerous.

* “I don't have any solution, but I certainly admire
the problem.” — Ashleigh Brilliant

The kernel should include a clock.

* In general, interrupts are handled in user space.

* For the clock interrupt, this turns out to be
prohibitively expensive.

* In the prototype, the scheduler handles clock
interrupts.

* But other code (esp. TCP) needs ticks.

The kernel should include a clock.

* User-space library for asking the scheduler for
ticks.

* Much too slow, though.

* Solution: put ticks 1into kernel, with reference-
counted packets.

— Reference-counted packets needed for multicast
anyway.

Result: New design

* Full details of the new design are in my thesis.

* A summary of the interesting decisions:

— Threads.
— IPv6 interface objects.
— Per-process filesystems.

— Service discovery.

* Requires multicast.

New design: Threads

* Kernel provides context switching and packet
delivery.

* Many-to-many relationship between contexts and
KAN endpoints will permit threading.

* Usetul for implementing TCP: a separate thread
can handle all TCP traffic and deliver results to
other threads 1n same process.

New design: Threads (2)

* Will require in-process synchronization
primitives.

* Don't want to add them to the kernel; don't want
to incur latency of round trip to a lock server.

* Can be implemented via atomic operations, plus
the ability to yield to another thread.

New design: IPv6 interface objects

* An interface 1s an object to send and receive
packets.

* Subclasses present in the prototype: KAN
interface, Ethernet interface.

* Most processes have just one interface, for the
KAN.

* Routers have two or more interfaces.

New design: Per-process filesystems.

* Most filesystems accessed over the KAN.
— Each process has its own filesystem clients.

* No reason all the processes have to access the
same file servers.

* Similar to Plan 9.

— Possibly at a finer grain, though: different code in
same process might access different file servers.

New design: Service discovery.

* Based on DNS SRYV records.

* Want to find a local server that offers filesystem
X? Ask for corresponding SRV record.

* Probably via multicast DNS (aka zerocont,
Rendezvous).

— Prototype doesn't have multicast, so...

New design: Multicast

* Various possibilities.

* Most of them involve giving up the O(1)
guarantee and/or zero-copy networking.

* Two remaining options:

— Multicast server.

— Multicast KAN endpoints.

* Both require reference counting on the packets.

New design: Multicast server

Processes would talk to the multicast server,
asking to join and leave multicast groups.

To send a multicast packet, send it to the server.
— Server address at link layer, group address at IP layer.

Server forwards.

Disadvantages:

— Latency.

— Single point of failure.

New design: Multicast server

%
KAN

New design: Multicast KAN
endpoints

* Requires kernel support.
* Join/leave groups by asking the kernel.

* Any group with members has a KAN endpoint.
— Circular buffer of packets for the group.

* If endpoint X 1s a member of group G, then
receiving on X checks G's queue first.

Multicast KAN endpoints

. Gl ¢
P1 P2 . P3
—()
2
KAN
' G1
Pl P2 P3
——(P,
2

Conclusion

* The prototype was a limited success.

* Functioning OS:

- TCP/IPv6
— Ethernet
— HTTP server

* Provided plenty of experience for version 2.

Future work

Process migration.

POSIX support.

Hardware support.
Performance comparisons.

Flexibility exploration.

